Boundary parametrization of self-affine tiles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Parametrization of Planar Self-affine Tiles with Collinear Digit Set

We consider a class of planar self-affine tiles T generated by an expanding integral matrix M and a collinear digit set D as follows :

متن کامل

Rational Self-affine Tiles

An integral self-affine tile is the solution of a set equation AT = ⋃d∈D(T +d), where A is an n× n integer matrix and D is a finite subset of Z. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices A ∈ Qn×n. We define rational self-affine tiles as compact subsets of the open subring R ×∏pKp of the adèle ring AK , where ...

متن کامل

Geometry of Self { Affine Tiles

For a self{similar or self{aane tile in R n we study the following questions: 1) What is the boundary? 2) What is the convex hull? We show that the boundary is a graph directed self{aane fractal, and in the self{similar case we give an algorithm to compute its dimension. We give necessary and suucient conditions for the convex hull to be a polytope, and we give a description of the Gauss map of...

متن کامل

Self-Affine Tiles in Rn

A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves seve...

متن کامل

Disklikeness of Planar Self-affine Tiles

We consider the disklikeness of the planar self-affine tile T generated by an integral expanding matrix A and a consecutive collinear digit set D = {0, v, 2v, · · · , (|q|−1)v} ⊂ Z2. Let f(x) = x2+px+q be the characteristic polynomial of A. We show that the tile T is disklike if and only if 2|p| ≤ |q+2|. Moreover, T is a hexagonal tile for all the cases except when p = 0, in which case T is a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2011

ISSN: 0025-5645

DOI: 10.2969/jmsj/06320525